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Ahatract-The object of this investigation is to study various methods of analyzing radiative energy 
transport within a plasma. For this purpose, a very simple physical system is chosen consisting of a 
hydrogen plasma bounded by two parallel black plates, and within the plasma there is a uniform heat 
source per unit volume. Limited results are also presented for a hydrogen plasma in radiative equilibrium. 

Since line radiation is generally character&d by relatively large optical thicknesses, whereas continuum 
radiation corresponds to much smaller optical thicknesses, it is found that the optically thin and optically 
thick limits have little practical utility, in that both line and continuum radiation will rarely be either thin 
or thick simultaneously. This large variation in spectral optical thickness further appears to limit the 
utility of a nongray differential approximation, by which the radiative flux is described through a second- 
order differential equation. 

It is shown that line radiation can have a significant effect upon hdiative energy transport within the 
plasma for moderate pressures. At higher pressures, however, the lines become opaque and no longer 
contribute to the radiative transport process. In either case, lines appear to have little influence upon 
radiation passing through the plasma (as opposed to radiative transport within the plasma), since the 

lines encompass only a small fraction of the spectrmn. 

NOMENCLATURE 

constant appearing in equation (3); 
constant appearing in equation (3); 
Planck’s function ; 
plate spacing ; 
partial pressure of atomic hydrogen ; 
total pressure; 
radiative heat flux ; 
heat source per unit volume ; 
absolute temperature ; 
centerline temperature; 
pressure path length, u = PHy ; 
total pressure path length, u. = PHL ; 
physical coordinate ; 
linear Planck mean absorption co- 
efficient [cm-‘] ; 
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KR, Rosseland mean absorution coefhcient __ 
[~-‘I; 

T,* 
spectral absorption coefficient [cm- ‘1; 
thermal conductivity; 

e, modified emissivity; 
6 Stefan-Boltznunm constant ; 

0, wave number [cm-‘]. 

INTROD&l’ION 

THE PUREGSE of the present paper is to investi- 
gate methods of analyzing radiative energy 
transfer within a high-temperature gas, and the 
specific case of a hydrogen plasma is considered. 
Radiative transfer analyses within absorbing- 
emitting gases characteristically involve integral 
or integrodifferential equations as the applicable 
energy equation, since the radiative flux posses- 
es an integral formulation. If the assumption of 
a gray gas is employed, the kernel function for 
the integrals appearing in the radiative flux 
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equation is the second exponential integral, 
&(t). The kernel function for real (nongray) 
gases is much more complicated, since it depends 
upon the specific gas as well as the state of the 
gas. 

Nongray kernel functions have seen use in 
atmospheric studies, and a survey of these 
applications is given by Goody [l]. The appro- 
priate kernel function is the spatial derivative of 
either the emissivity or the modified emissivity 
of the gas [l]. The formulation of the radiative 
flux in terms of the derivative of the gas emiss- 
ivity is also discussed by Penner [2]. 

In the preceding applications, the nongray 
kernel function has been used to describe the 
radiation from a gas volume, assuming a known 
temperature distribution. The first application 
of a nongray kernel function to the solution of 
the energy equation locally throughout the gas 
appears to be in the work of Gille and Goody 
[3]. This involved an analysis of combined 
infrared radiation and thermal conduction 
within ammonia. It was shown that for linear- 
ized radiation (small temperature differences), 
the appropriate kernel function is the spatial 
derivative of the modified emissivity. In contrast 
to the emissivity, for which Planck’s function is 
the weighting factor, the modified emissivity 
employs the derivative of Planck’s function with 
respect to temperature as the weighting factor. 

A comprehensive discussion of the role of 
both the emissivity and the modified emissivity 
in the formulation of nongray kernel functions 
is given by Wang [4]. The nongray kernel 
function for linearized radiation has also been 
discussed by Baldwin [5], and by Gilles, Cogley 
and Vincenti [6]. In addition to the work of 
Gille and Goody [3], application of the nongray 
kernel formulation to infrared radiative transfer, 
for which the spectral absorption coefficient 
corresponds to discrete vibration-rotation 
bands, may be found in references [7-111. 

For plasma radiation, the spectral absorption 
coefficient results from free-free, bound-free, 
and bound-bound electronic transitions. The 
freefree and bound-free transitions give rise to 

a continuum contribution to the absorption 
coefficient, while the bound-bound transitions 
result in a contribution which consists of 
discrete spectral lines. 

In the present investigation, radiative energy 
transfer within a hydrogen plasma is considered. 
Since the absorption coefficient is non-zero 
throughout the spectrum, then, unlike infrared 
radiation [8,9], the Rosseland equation is the 
appropriate asymptotic limit for large optical 
thicknesses. The illustrative analytical model is 
that of a gas bounded by two parallel plates and 
within which there is a uniform heat source. It 
should be emphasized that this model is not 
intended to be a physically realistic system, but 
it is used solely to illustrate the radiative trans- 
port process for a hydrogen plasma. Limited 
results are also given for the case of radiative 
equilibrium. Linearized radiation and local 
thermodynamic equilibrium are assumed 
throughout. 

Use will be made of the radiative transport 
quantities for a hydrogen plasma recently 
reported in reference [12]. These quantities 
include the modified emissivity and its first 
derivative, the linear Planck mean absorption 
coefficient, and the Rosseland mean absorption 
coefficient. The spectral absorption coefficient 
which was used in these calculations included 
twenty-one Stark broadened lines. 

RADIATIVE FLUX 

Consider the physical geometry consisting of 
two parallel black plates, with one plate (y = 0) 
having the temperature T1 and the other (y = L) 
the temperature T,. The linearized radiative flux 
for this system has been expressed by Gille and 
Goody [3] in terms of the modified emissivity 

(1 - e-“-Y)do (1) 
Tl 0 

and its first derivative 

E’(Y) = & JC, eeKwY do. (2) 
1 
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+ 8aaT: [ [T(f) - T,] E’[~(Y - Y’)] dy’ 

- Sad: ;[T(y’) - T,] E’[&’ - y)] dy’. (7) 
Y 

For b = 2u = 1.667, this coincides with the 
formulation of Gille and Goody [3], while in 
the present study values for a and b will be 
chosen as 

a=: b = ;. (8) 

In addition to equations (6) and (7), which are 
general expressions for all optical thicknesses, 
there also exist the well-known optically thin 
and optically thick limits. As discussed by 
Cogley, Vincenti and Gilles [13], and by Wang 
[4], the linear Planck mean coefficient applies 
when the radiation is both linearized and 
optically thin. This mean coefficient is defined as 

KLP = 

[ x,(deJdTL1 do 
69 

4aT: 

The optically thin expression for the one- 
dimensional divergence of the radiative flux 
vector may be obtained by differentiating equa- 
tion (6), noting from equations (5) and (9) that in 
the optically thin limit 8’ = rcLP [since E,(KJ) 
31 1 for rcmy 3 11, and deleting the self absorp- 
tion terms. The result is 

This formulation made use of the exponential 
approximation 

E,(t) ir: a edbf, Es(t) = -s E,(t) dt 3: % eebt. 

(3) 

Alternatively, Baldwin [S], Wang [4, 73, and 
Gilles, Cogley and Vincenti [6] have formulated 
the linearized radiative flux without making use 
of equation (3). Following Wang [4], a mean 
value of s(y) is defined as 

KY) = [ sCYICL) p dp 

such that from equations (1) and (2)* 

C+ - E,(k,y)l dw (4) 
Tl 

QMLY) do. (5) 

0 

The linearized radiative flux (total over all wave 
numbers) is in turn [4] 

qR = 8aT;(T, - T,) [; - ii(L - y) 

+ 8aT: i [ T(y’) - T,] .?(y - y’) dy’ 

- 8aT: 5 [ Tt_v’) - T,] .Q’ - y) dy’ (6) 
Y 

where the linearization has been taken about 
the temperature T,, and K, thus corresponds to 
this temperature. 

The above equation may now be rephrased 
in terms of s(y) and s’(y) through use of the 
exponential approximation. Upon substituting 
equation (3) into equations (4) and (5), it is easily 
shown that equation (6) becomes 

q~ = ;aT:(T, - Tz) (1 - sCb(L - Y)]} 

* In the nomenclature of Gilles, Cogley and Vincenti [6], 
Ecy) = : - F,(y) and E’(y) = F2~) 

dq, - dy = 8aT&dT, + T,) - 16oT:rc,T(y). 

When the radiation 

(10) 

is optically thick, the 
radiative flux is described by the Rosseland 
equation, which for linearized radiation has the 
form [13] 

16oT; dT 
qR=-xv (11) 

1 lmlde --.--CJ _(o 
s 0 KR 4aT, K, dT T1 

do (12) 
0 
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is the conventional Rosseland mean absorption 
coefficient. 

DIFFERENTIAL APPROXIMATION 

The differential approximation has seen wide 
application in gray gas analyses. A nongray 
extension of the differential approximation has 
been proposed by Traugott [14] for the emis- 
sion-controlled limit (cold boundaries), and the 
basis of this extension was the requirement that 
the differential approximation reduce to the 
correct thin and thick limits. Cogley, Vincenti 
and Gilles [ 131 have discussed this for linearized 
radiation. More recently Gilles, Cogley and 
Vincenti [6] have shown that a differential 
approximation for linearized radiation can be 
obtained through approximating E’(y) by an 
exponential function in equation (6). 

A similar result may be obtained from equa- 
tion (7) by letting* 

e’(y) N 7c1 e-K2Y, 1 - c(y) N 2 eexzy (13) 

where rcl and rc2 are as yet unspecified mean 
absorption coefficients. Upon substituting equa- 
tion (13) into equation (7), differentiating twice, 
and making use of equation (8), the differential 
approximation for qR is 

d2q, 
dy2 

- +c;qR = 12qdr: s. 
dy 

(14) 

The boundary conditions for equation (14) 
follow by substituting equations (8) and (13) into 
equation (7), and combining the resulting ex- 
pression for qR with its first derivative at each 
boundary [6]. This yields 

- $c,q,(O) = 12?c,aT:[T(O) - T,] 

(154 

(1%) 

* A parallel treatment, applicable to the emission- 
controlled limit, has recently been given by Traugott [16] 

Three pairs of choices for k1 and rc2 have been 
suggested by Gilles, Cogley and Vincenti [6], 
and these are* 

ICI = K2 = lcLp (16) 

ICI = K2 = liR (17) 

K1 = KLP, kc2 = (ICLPq#. (18) 

The use of equations (16) or (17) corresponds to 
the gray gas assumption applied to equation 
(7), with either rcLp or ICY being employed as the 
mean absorption coefficient. As discussed in 
reference [6], the use of equation (18) in equation 
(14) yields the Rosseland equation in the optic- 
ally thick limit, while the correct form for 
dq,/dy is obtained in the optically thin limit.? 
However, equation (18) does not produce the 
correct expression for qR in the optically thin 
limit. This may easily be shown by substituting 
equations (8) and (13) into equation (7), and in 
the optically thin limit this reduces to 

qR = 4a 5 T:(T - T,), 
(! 

(19) 
K2 

which is correct only for ICE = IC*. To give a 
specific example, for a hydrogen plasma with 
F = lO.OOO”K and P = 37.5 atm, then, accord- 
ing to equation (18), rcl/rcZ = 44 [12]. 

RADIATIVE TRANSFER ANALYSES 

The radiative flux expressions discussed in the 
two preceding sections will now be applied to 
the illustrative problem of a hydrogen plasma 
bounded by two parallel black plates. Within 

____..- 
* Actually the proposed !cl and K~ results of reference [6] 

correspond, in the present nomenclature, to different values 
of D and b for each pair of rcr and K~ Specifically, a = 1 and 
b = 2 for equation (16), a = 2 and b = : for equation (17) 
and a = 1 and b = J3 for equation (18). In the present 
investigation, a = 2 and b = * will be used throughout 

t Due to the present choice for a and b, equation (18) will 
actually yield a result for the optically thin limit which is 
3 times the exact expression given by equation (10) This 
hmiting form is obtained by noting that the second term on 
the left side of equation (14) may be deleted under optically 
thin conditions, such that equation (14) can be integrated 
directly The constant of integration is evaluated from the 
sum of equations (Ha) and (15b), with qs(O) = q,(L) for 
optically thin radiation 
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the plasma there is a uniform heat source per 
unit volume, Q, and the two plates have the same 
uniform temperature T1 (i.e. T2 = TJ. 

With respect to the integral formulation for 
the radiative flux, equation (7) will be employed 
rather than equation (6). It should be recalled 
that equation (7) is an approximate form of 
equation (a), and that this approximation refers 
to the use of equation (3). The application of 
both equations (6) and (7) to i.r. radiative 
transfer has recently been considered by Greif 
and Habib [ll], from which it is found that the 
essential characteristics of the integral formula- 
tion are retained by equation (7). As previously 
discussed, results for E(y), E’(Y), icLP and KR are 
given in reference [12] for a hydrogen plasma, 
and the following analyses will employ these 
quantities. 

In order to clearly illustrate the radiative 
transfer process within the plasma, solutions will 
first be obtained neglecting thermal conduction 
as an energy transport mechanism Conduction 
will then be included, so that. the relative im- 
portance of conduction and radiation as trans- 
port mechanisms may be determined. 

respect to u, and u = P,y, where P, is the 
partial pressure of atomic hydrogen. Equation 
(21) constitutes an integral equation describing 
the dimensionless temperature profile, B(u), 
and the kernel of this equation, E’(U), is tabulated 
in reference [12] for hydrogen. 

The optically thin solution may be obtained 
directly from equation (21). Analogous to the dis- 
cussion preceding equation (lo), optically thin 
radiation corresponds to 

E’(U) = ‘CLP 
rE 

and the optically thin solution of equation (21) 
is found to be 

e(u) = &. 
P 

(22) 

As previously discussed, this result is in error by 
a factor of 3 due to the present choice for a and b. 
Equation (22) is, however, consistent with 
equation (21) as well as with equations (14) and 

(I% 
The optically thick solution follows from 

equations (11) and (20) as 

Conduction neglected 
For uniform heat generation, and with con- 

(23) 

duction neglected, the statement of conservation 
of energy is that dqddy = Q. Since the problem 

while combining equations (14), (15) and (20) 

is symmetric, integration of this yields 
yields 

1 

Upon letting 

e = ‘%(T - T) for the solution corresponding to the differential 
QL approximation. 

then equations (7), (8) and (20) combine to yield Equation (21) has been solved numerically for 

- - + = ; jb 6(u’) E’[& - u’)] du’ 

19(u) employing the same method used in [8], 
U and for the sake of brevity only the centerline 

UO temperature will be presented ; that is, T, = 

- f 1 flu’) E’[-u’ - u)] du’, 
T(L/2). This is represented by the solid curve in 

(21) Fig. 1 for Tl = 10000°K and an electron 
density of 10” cme3, which corresponds to a 

where e’(u) denotes the derivative of E with total pressure of 37.5 atm. Also shown are results 
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utilizing continuum radiation only, and this 
solution was obtained from equation (21) by 
employing values of E’(U) from reference [12] for 
which lines were not included in the calculation. 
It may be seen that the importance of line 
radiation is relatively small for the conditions 
of Fig. 1, and the reason for this is that the lines 

loo/ 

Con&m and lines 
/ 

1’ 
Optically thick-- _ ___I -_ 

/ 

!’ 

Optically thin 

/_-.-.-__. 

Ooll 
0. I IO 100 

L, cm 

FIG. 1. Centerline temperature results with conduction 
neglected, TI = 10000°K. N,. = IO” cme3 (P = 37.5 atm). 

are nearly opaque and thus do not contribute 
significantly to the radiative transfer process. In 
addition, for the conditions of Fig. 1 the Lyman 
continuum is also nearly opaque. Consequently 
the radiative transport process illustrated in 
Fig. 1 is due primarily to continuum radiation, 
with the Lyman continuum excluded. One may 
note the relative invariance of the’solid curve 
with L for the smaller L values, and this is 
indicative of optically thin radiation.* The 
implication is clearly that, while the lines and 
the Lyman continuum are nearly opaque, the 

* See equation (22) and note that the ordinate of Fig 1 
corresponds to LB(u,/2). 

remaining continuum radiation is nearly optic- 
ally thin for small L values. 

The optically thin and optically thick solu- 
tions, corresponding to equations (22) and (23), 
respectively, are also illustrated in Fig. 1. Since 
the lines are nearly opaque even for L = 0.1 cm, 
it is obvious that excessively small values of L. 
would be required for the solution of equations 
(21) to approach the optically thin limit (i.e. for 
both line and continuum radiation to be optic- 
ally thin). Conversely, extremely large L values 
are necessary for continuum radiation to become 
optically thick, which must occur in order for 
the solution of equation (21) to approach the 
optically thick limit. 

Similar comparisons are shown in Fig. 2 for 

/-/-------- 

Continuum only 

---- i_ __---- 

fi IOO- 

Continuum and lines 

Lr “$ 

i t 
-_--_-- 

2 
IO- 

Optically thin 

I I I 
0.1 1 IO I 

L, cm 

IO 

FIG. 2. Centerline temperature results with conduction 
neglected, TI = 200WK, N,, = 10” crne3 (P = 0.57 atm). 

TI = 20000°K and the same electron density 
(10” cm - 3), which in this case corresponds to 
a total pressure of 0.57 atm. Here the line 
contribution is much more pronounced, which 
results from a combination of the lower pressure 
and higher temperature. This gives rise to lower 
spectral optical thicknesses for the lines, relative 
to the conditions of Fig. 1, such that, except for 
very large values of L, the lines are not opaque 
and thus contribute to the radiative transfer 
process. Note that the optically thin solution is 
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a more realistic limit than for the previous 
comparison, although extremely small L values 
would still be required in order to approach 
optically thin radiation. On the other hand, the 
optically thick solution is even less useful than 
for the conditions of Fig. 1, and it is not possible 
to include it in Fig 2. To give an example, for 
L = 100 cm the optically thick limit yields an 
ordinate value of 0.081, which is roughly four 
orders of magnitude less than what would be 
predicted by the solution of equation (21). 

An additional ~ompa~son is shown in Fig. 3 
for Tr = 10000°K and au electron density of 
1Ol6 cmm3, which corresponds to a pressure of 
0.43 atm. As would be expected, the importance 
of line radiation is more pronounced than in 
Fig 1, since the pressure is substantially less 
than for Fig. 1. On the other hand, a comparison 
of Figs. 2 and 3 illustrates the effect of tempera- 
ture upon the line contributions, since the two 
pressures are relatively close to one another. 
While the line contribution steadily diminishes 
with increasing L, in Fig 2, this is not the case 
for the lower temperature results of Fig. 3. 

104 

0. I 

Optically thin 

__-._I__ 

I I 
I IO 

L, cm 

1 
i 

1 

Go 

FIG. 3. Centerline temperature results with conduction 
neglected, TX = 10 OOO%, N, = lOi cm-’ (P = 043 atm). 

Evidently, for the conditions of Fig. 3, the line 
contribution for small L values is due mainly to 
a few strong lines. As L increases, these lines 
become opaque, while weaker lines become 
increasingly important. Eventually, for very 
large values of L, the line contribution will 
become negligible. 

As in the previous figure, the radiative transfer 
process for the conditions of Fig 3 is far from 
approaching optically thick radiation, with the 
optically thick limit underestimating the ordi- 
nate value by roughly five orders of ma~itude 
for L = 100 cm. 

The somewhat different shape of the solid 
curve in Fig. 3, as opposed to Figs. 1 and 2, can 
best be explained by considering the dashed 
curve representing continuum radiation only. 
For small values of L, this curve approaches a 
constant value indicative of optically thin 
radiation, and for the conditions of Fig. 3 this 
corresponds to the entire continuum being 
optically thin. The dashed curve also indicates 
optically thin radiation for large L values, and 
this is a consequence of the Lyman continuum 
becoming opaque while the remaining con- 
tinuum is still optically thin. This transition of 
the Lyman ~ntinu~ from optically thin to 
opaque in turn dictates the shape of the solid 
curve representing both line and continuum 
radiation. 

Results employing the differential approxi- 
mation, equation (24), are compared in Figs. 4 
and 5 with the solution of equation (21). Un- 
fortunately, the differential approximation, as 
presently employed does not appear to be a 
particularly useful approximation. The possible 
failure of the differential approximation has 
been predicted by Gilles, Cogley and Vincenti 
[6], and they suggest that it may be necessary to 
replace equation (13) by a sum of exponentials 
in order “to represent a gas that is simul- 
taneously thick and thin in different parts of the 
spectrum”. Indeed, in the present situation line 
radiation generally corresponds to large optical 
thicknesses, while continuum radiation tends 
toward much smaller optical thicknesses. Similar 
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IO- 
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II - 
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.- -- r-‘-____L-- 
K,=K2=KR / 

/ 

_ _v /\ 
/ 

/ / 

/ K, = KLP. Kcz’ (KpK,+J IL-/ 

/ 
/ 

/ 
/ / 

-/ / 
/ 

--’ __--- 
- Solution of equation (21) 
--- Differential opproximation 

I I 
I IO I’ 

L, cm 

_i 
00 

RG. 4. Centerline temperature results with conduction 
neglected. T, = 10000°K. N,. = 10” cme3 (P = 37.5 atm). 

conclusions have been reached by Traugott [16] 
for the emission-controlled limit. 

Conduction included 
When conduction is included as a transport 

104 I I 

--------------- 

K, =IC2=l(* 

E IO”_ 
” - Solution of eq. (21) 

- - - Differential approximation 
I 

10 IO 0.1 IO 

L, cm 

RG. 5. Centerline temperature results with conduction 
neglected, TI = 20 000% IV, = 10” crne3 (P = 0.57 atm). 

mechanism within the gas, the statement of 
conservation of energy becomes 

(25) 

In this case a dimensionless temperature differ- 
ence will be defined as 

T - T, 

’ = QL?/I 

and equations (7) (8) and (25) combine to yield 

&u’) e’[au - u’)] du 

0 

- ‘;(u’) d&.i’ - u)] da+ 
s 

(26) 

U 

Since the presence of conduction implies con- 
tinuity of temperature at the boundaries, the 
boundary condition for this equation is 

4(O) = 0. (27) 

Equation (26), subject to equation (27), has been 
solved numerically employing thermal con- 
ductivity values of Yos [15]. Note that for 
negligible radiation transfer 

(#)=f ,u--; ( > 0 
(28) 

Dimensionless centerline temperatures, as 
obtained from the solution of equation (26), are 
illustrated in Figs. 6 and 7. Since the centerline 
temperature for pure conduction follows from 
equation (28) to be 

T, - TI ____ = 0.125, 
QJW 

then Figs. 6 and 7 serve to illustrate the effect of 
radiative transfer upon the temperature profile 
within the gas. As would be expected, the im- 
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portance of radiation becomes more pro- 
nounced as the plate spacing is increased. 

The effect of pressure, as illustrated in Fig. 6, 
is in accord with Figs. 1 and 3, since for the 
conditions considered an increase in pressure 
results in an increase in radiative transport 

L, cm 
FIG. 6. Centerline temperature results with conduction 

included, T, = 10000°K. 

L, cm 
RG. 7. centerline temperature resulta with conduction in- 

cluded, T1 = 20OOO”K, N. = 10” cm-’ (P = 0.57 atm). 

within the plasma The influence of line radia- 
tion, which is illustrated in Fig. 6 for 37.5 atm 
as well as in Fig. 7, also agrees with the previous 
results of Figs. 1 and 2. 

What is perhaps most surprising about the 
information presented in Figs. 6 and 7 is the 
large role radiation plays as an internal transport 
mechanism To give an example, for a tempera- 
ture of 20 000°K and a pressure of 0.57 atm, the 
centerline temperature difference is reduced by 
approximately one half, relative to pure con- 
duction, for L = 0.4 cm, which implies that for 
these conditions radiation and conduction are 
equally important energy transport mecha- 
nisms. For the same temperature and pressure, 
but with L = 1 cm, the centerline temperature 
difference is reduced by an order of magnitude, 
and thus radiation completely dominates over 
conduction. 

DISCUSSION OF REZXJLTS 

Although the results of the previous section 
are quite limited in extent, it is, nevertheless, 
clear that the practical utility of either the 
optically thin or optically thick limits is very 
restricted, and this is due to the large range of 
optical thicknesses that occur under actual 
conditions It should be emphasized, however, 
that the preceding results characterize a situa- 
tion for which the net radiative transfer is solely 
between the gas and the bounding surfaces; that 
is, there is no net radiative transfer between 
surfaces. In this regard, it is of interest to con- 
sider briefly the opposite extreme of a problem 
for which the net radiative transfer is strictly 
between the surfaces. Such a situation is that of 
radiative equilibrium for a hydrogen plasma 
bounded by two parallel surfaces having different 
temperatures T1 and T,. 

The state of radiative equilibrium is described 
by dq,/dy = 0; that is, there is no net energy 
transfer to or from the gas, such that qR = 
constant Upon defining 
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then equations (7) and (8) yield 

Q = 1 - &[& - U,] 

- ; i ~I(u’)$[;u - u’)! du’ 

+ ; 7 ?(u’) E’[&’ - u)] (29) 
” 

This together with radiative equilibrium 
condition 

Q = const. (30) 

completely describes both q(u) and Q. This 
system of equations has been solved numerically, 
and the results for the dimensionless heat flux 
between surfaces, Q, are illustrated in Fig. 8. In 
this case the optically thin limit coincides with 
the result for a transparent gas, for which Q = 1. 

optically thin for the uniform heat generation 
problem. 

This difference in interpretation is due mainly 
to the role played by line radiation. With 
reference to Fig. 1, it has previously been 
discussed that the lines are essentially opaque, 
while for 1, values less than approximately 1 cm, 
continuum radiation (with the exception of the 
Lyman continuum) is close to being optically 
thin. Thus, the departure from optically thin 
radiation in Fig. 1 is primarily a consequence of 
the lines being nonthin. Conversely, the fact 
that for radiative equilibrium the opaque lines 
do not substantially reduce Q is a result of line 
radiation encompassing only a small fraction 
of the radiation spectrum. The optically thin 
continuum radiation, however, encompasses 
most of the spectrum, and, for the conditions 
previously stated, since this radiation is nearly 
optically thin, the resulting value for Q will in 
turn be close to the optically thin limit. 
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In effect, line radiation appears to have little 
influence upon radiative transfer through the 
plasma, as is further shown in Fig. 8 for T1 = 
20000 K and P = 0.57 atm. while it may or 
may not play a significant role as an energy 
transport mechanism within the plasma, de- 
pending upon whether the line radiation is or is 
not opaque. Again referring to the above con- 
ditions of T1 = 20000°K and P = 0.57 atm. 
Figs, 2 and 7 illustrate that lme radiation can 
indeed be an important energy transport mech- 
anism within the plasma. 
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TRANSPORT D’ENERGIE PAR RAYONNEMENT A L’INTERIEUR DUN PLASMA 
D’HYDROGENE 

R&sum&-L’objet de cette etude est d’examiner diverses methodes d’analyse du transport d%nergie par 
rayonnement dam un plasma. Dam ce but, un systeme physique t&s simple est choisi, consistant en un 
plasma d’hydrogene limit& par deux plaues noires paralleles, et a l’interieur une source uniforme de 
chaleur par unite de volume. Des remhats restreints sent presentes aussi pour un plasma d’hydrog&ne 
en equilibre de rayonnement. 

Puisque ie rayonnement par raies est caracterise generalement par des Cpaisseurs optiques relativement 
grandes, tandis que le rayonnement continu correspond 8. des Ppaisseurs optiques beaucoup plus petites, 
on trouve que les limites optiquement mince et optiquement epaisse ont peu d’utilite pratiquej en ce que 
les rayonnements par raies et continu seront rarement soit fins soit tpais simultanement. Cette grande 
variation dam l’tpaisseur optique spectacle apparalt en outm limiter l’utilite d’une approximation dif- 
ferentielle non grise, g&e a laquelle le flux rayonnant est d&it a l’aide dune equation differentielle du 
second ordre. 

On montre que le rayonnement par raies peut avoir un effet sensible sur le transport par energie de 
rayonnement dans le plasma pour des pressions mod&es. A des pressions plus Bev&es, cependaut, les 
raies deviennent opaques et ne contribuent plus au processus de transport par rayonnement. Dans l’un 
ou l’autre cas, les raies semblent avoir peu d’influence sur le rayonnement passant B travers le plasma (en 
opposition avec le transport par rayonnement a l’interieur du plasma), puisque les raies ne concernent 

seulement qu’une petite fraction du spectre. 

ENERGIETRANSPORT DURCH STRAHLUNG IN EINEM WASSERSTOFF-PLASMA 

Zusammenfassung-Zweck dieser Untersuchung 1st es, verschiedene Berechnungsmethoden ftir die 
W&rmestrahlung in einem Plasma zu studieren. Dazu wird ein sehr einfaches physikalisches System 
gewiihlt : 

En Wasserstoffplasma, das durch zwei parallele schwarze Platten begrenzt ist, und in dem pro Volu- 
meneinheit eine konstante Warmemenge produziert wird. Begreuzt giiltige. Ergebnisse werden such fllr 
ein sich im Strahlungsgleichgewicht befindliches Wasserstoffplasma angegeben. 

Da “Linien’‘Strahlung im Allgemeinen durch relativ grosse optische Dicken charakterisiert ist, 
wahrend bei kontinuierlicher Strahlung meist weit kleinere Dicken vorliegen, ergibt sich, dass die Losung 
iii die optich diinnen und optisch dicken GrenzHlle wenig praktischen Wert besitzen, well “Linien”- 
St&lung turd kontinuierliche Strahlung zusammen selteu gleichzeitig opt&h dihtn oder sein werden. 
Die grossen Unterschiede in den spektralen optischen Dicken scbeinen femer die Anwendbarkeit einer 
Niiherung flir nicht-graue Strahlung, bei der der Strahlungsstrom i durch eine Differentialgleichung 2. 
Ordnung beschrieben wird, zu begrenzen. 

Es wird gezeigt, dass die “Linien”-Strahhmg bei m&sigen DruGken einen bet&h&hen Einfluss auf 
den Energietransport innerhalb des Plasmas haben kann. Bei hoheren Driicken werden die “Linien” 
allerdings undurchlbsig und die von ihnen ausgehende Strahlung triigt nichts mehr zum Energietransport 
bei. In jedem Fall scheinen die Linien wenig Einfluss auf Strahlung zu haben die durch das Plasma hin- 
durchgeht (im Gegensatz zum Strahlungstransport innerhalb des Plasmas), da Sie mu einen kleinen 

Bruchteil des Spektrums umfassen. 
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,IrYWlCTbIfl BHEPl?OOBMEH R i3OaOPO)JHOr? rLJIh3ME 

AHHOTaqlra-LSeJrbIoRaHHOI pa6oTbI 6bIJlOM3~eHHepa3JiIFfHbIX MeTO~OBaHaJIM3a rrepeHoca 

JI~=~HCTOZL 3HepraM B nza3Me.&IR eTO&qejrA 6rznaBuBpaHa npocTaR #SEmYeCKart CmTePAa, 

~OCTO~~a~ Cl3 Br~rpr~HO~ n~~a3M~, OpaH~qe~HO~ ABylwR n3pa~~e~bHbIM~~ qepH~M~ 

~~acT~HaM~,aB~y~p~ ~JfasMbIIlMejIcRO~~OpOI7HbI9aC~0g~a~Tenna.npeRcTasneabtTaKxte 

HeKOTOpIJe peZ3yJibTaTbifiJIfl ROAOPORHOP nJia3MbI IIpHJIy%ICTOM paBHOBeCHH. 

nOCKOJIbKJ' JIHHetHOe &13JIy'JeHlle 06nwio XapaKTepll3JWTCR OTHOCPITeJIbHO fiOJlbIII%lMii 

nJIOTHOCTRMl4, TOrna KBK HenpepbIBHOMy MBJIYYeHHFO COOTBeTCTByWT MHOrO MeHbIIIEIe 

OIITwfeCKMe ~~OTHOCT~~, HanueHo, YTO Mamde I4 60JIbIuHe npegem OnTEqeCKOt IIJIOTHOCTIJ 

fIpaKTM4eCKH MaJIOIlOJfe3HbI,TBK KaK~~Xe~HOe~~~yqeH~e~He~pepblBHOe~3~y~eH~epe~KO 

BCl'pe'SamTCR O~HOBpeMeHHO Maxima SIJIH 60~~~~~~. oKa3bIBaeTC~, 9TO TaKOe ~O~b~Oe 

~3Me~eH~e cneKTpa~bH0~ onT~qecK0~ ~~0T~0cT~ 0rpaH~~q~BaeT ~cno~b3oBaH~e Hecepoi 

A~~epeH~~a~bHO~ an~pOKC~Ma~~~, C l~CIlOJlb3OBaHI%eM KOKOpO% JIy'lEiCTbI& IIOTOK 

OnHCtiBaeTCR ,I@@epeHI@JlbHISM ypaBHeHI%eM BTOpOrO IIOpHAKa. 

nOKa3aH0, YTO JIHHetiHOe ll3JIy'IeHHe MOH(eT HMeTb 3HaVaTeJIhHOe BJIHRHile Ha I'IepeHOC 

ny'4llCTOP 3Hep171114 BHYTPI~ IIJI%3Mbl@lR yMepeHHblX JJaBJleHlii. OAHZlKO, lIpI 6oaee BbICOKHX 

AaBJIeHclF,X JIEHkfCZ CTaHOBRTCR HellpO3p3'iHblMA li He OKa3bIBalOT BJIMHHHR Ha IIpOIWC 

nywicToronepesoca. Bnro6om cny~aeoKaablsaeTe~,~~o~~~~~~MajIo~~~ffWTHanpoxo~Iirrlee 

sepea nnaalty ~3~y~eH~e (B ~poT~Bono~o~HocTb ~yq~&ToMy nepeHocy BHYTPE~ ii~a3M~)~ 

~OCKO~bKy~~H~~ OXB~TbIBaWT TOJIbKO He6O~b~y~ AOJIW CneKTpa. 


