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Abstract—The object of this investigation is to study various methods of analyzing radiative energy
transport within a plasma. For this purpose, a very simple physical system is chosen consisting of a
hydrogen plasma bounded by two parallel black plates, and within the plasma there is a uniform heat
source per unit volume. Limited results are also presented for a hydrogen plasma in radiative equilibrium.

Since line radiation is generally characterized by relatively large optical thicknesses, whereas continuum
radiation corresponds to much smaller optical thicknesses, it is found that the optically thin and optically
thick limits have little practical utility, in that both line and continuum radiation will rarely be either thin
or thick simultancously. This large variation in spectral optical thickness further appears to limit the
utility of a nongray differential approximation, by which the radiative flux is described through a second-
order differential equation.

It is shown that line radiation can have a significant effect upon radiative energy transport within the
plasma for moderate pressures. At higher pressures, however, the lines become opaque and no longer
contribute to the radiative transport process. In either case, lines appear to have little influence upon
radiation passing through the plasma (as opposed to radiative transport within the plasma), since the

lines encompass only a small fraction of the spectrum.

NOMENCLATURE
a, constant appearing in equation (3);
b, constant appearing in equation (3);
e,, Planck’s function;
L, plate spacing;
Py, partial pressure of atomic hydrogen ;
P, total pressure;
dg, radiative heat flux;
0, heat source per unit volume;
T, absolute temperature;
T, centerline temperature ;
u, pressure path length, u = Pgy;
uy,  total pressure path length, u, = PgxL;
¥ physical coordinate ;
Krp, linear Planck mean absorption co-

efficient [cm~1];
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A

Kp,  Rosseland mean absorption coefficient
[em™];
K. Spectral absorption coefficient [cm™'];

A, thermal conductivity ;

g, modified emissivity;
Stefan—Boltzmann constant ;
wave number [cm™1].

INTRODUCTION

THE PURPOSE of the present paper is to investi-
gate methods of analyzing radiative energy
transfer within a high-temperature gas, and the
specific case of a hydrogen plasma is considered.
Radiative transfer analyses within absorbing—
emitting gases characteristically involve integral
or integrodifferential equations as the applicable
energy equation, since the radiative flux posses-
es an integral formulation. If the assumption of
a gray gas is employed, the kernel function for
the integrals appearing in the radiative flux
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equation is the second exponential integral,
E,(t). The kernel function for real (nongray)
gases is much more complicated, since it depends
upon the specific gas as well as the state of the
gas.

Nongray kernel functions have seen use in
atmospheric studies, and a survey of these
applications is given by Goody [1]. The appro-
priate kernel function is the spacial derivative of
either the emissivity or the modified emissivity
of the gas [1]. The formulation of the radiative
flux in terms of the derivative of the gas emiss-
ivity is also discussed by Penner [2].

In the preceding applications, the nongray
kernel function has been used to describe the
radiation from a gas volume, assuming a known
temperature distribution. The first application
of a nongray kernel function to the solution of
the energy equation locally throughout the gas
appears to be in the work of Gille and Goody
[3] This involved an analysis of combined
infrared radiation and thermal conduction
within ammonia. It was shown that for linear-
ized radiation (small temperature differences),
the appropriate kernel function is the spacial
derivative of the modified emissivity. In contrast
to the emissivity, for which Planck’s function is
the weighting factor, the modified emissivity
employs the derivative of Planck’s function with
respect to temperature as the weighting factor.

A comprehensive discussion of the role of
both the emissivity and the modified emissivity
in the formulation of nongray kernel functions
is given by Wang [4] The nongray kernel
function for linearized radiation has also been
discussed by Baldwin [5], and by Gilles, Cogley
and Vincenti [6] In addition to the work of
Gille and Goody [3], application of the nongray
kernel formulation to infrared radiative transfer,
for which the spectral absorption coefficient
corresponds to discrete vibration-rotation
bands, may be found in references [7-11].

For plasma radiation, the spectral absorption
coefficient results from free—free, bound—free,
and bound-bound electronic transitions. The
free—free and bound-free transitions give rise to

a continuum contribution to the absorption
coefficient, while the bound-bound transitions
result in a contribution which consists of
discrete spectral lines.

In the present investigation, radiative energy
transfer within a hydrogen plasma is considered.
Since the absorption coefficient is non-zero
throughout the spectrum, then, unlike infrared
radiation [8,9], the Rosseland equation is the
appropriate asymptotic limit for large optical
thicknesses. The illustrative analytical modei is
that of a gas bounded by two parallel plates and
within which there is a uniform heat source. It
should be emphasized that this model is not
intended to be a physically realistic system, but
it is used solely to illustrate the radiative trans-
port process for a hydrogen plasma. Limited
results are also given for the case of radiative
equilibrium. Linearized radiation and local
thermodynamic equilibrium are assumed
throughout.

Use will be made of the radiative transport
quantities for a hydrogen plasma recently
reported in reference [12]. These quantities
include the modified emissivity and its first
derivative, the linear Planck mean absorption
coefficient, and the Rosseland mean absorption
coefficient. The spectral absorption coefficient
which was used in these calculations included
twenty-one Stark broadened lines.

RADIATIVE FLUX

Consider the physical geometry consisting of
two parallel black plates, with one plate (y = 0)
having the temperature T, and the other (y = L)
the temperature T,. The linearized radiative flux
for this system has been expressed by Gille and
Goody [3] in terms of the modified emissivity

X
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This formulation made use of the exponential
approximation

Ejt) ~ ae ™ Eyt) = —[Ej(dt ~ 2.

b
&)

Alternatively, Baldwin [5], Wang [4, 7], and
Gilles, Cogley and Vincenti [6] have formulated
the linearized radiative flux without making use
of equation (3). Following Wang [4], a mean
value of &(y) is defined as

i

B(y) = [ e(y/p) pdp

0

such that from equations (1) and (2)*
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The linearized radiative flux (total over all wave
numbers) is in turn [4]

qr = 80T%(T1 —-T) [117 — &L —y)
+ 80T?(I)[T(y’) - T]&y - y)dy

— 80T} ? [TO) — T]EY —»dy (6

where the linearization has been taken about
the temperature T}, and x,, thus corresponds to
this temperature.

The above equation may now be rephrased
in terms of &(y) and &(y) through use of the
exponential approximation. Upon substituting
equation (3) into equations (4) and (5), it is easily
shown that equation (6) becomes

__8a

4= =7 oTHT, — T,) {1 — ¢[B(L — y)]}

* In the nomenclature of Gilles, Cogley and Vincenti [6],

&) =} — F3() and £(y) = F,()

+ 8a0T? j [T) — Ti] &by — y)1dy

~ 8a0T? {[TW) - TL1eTB — W dy. (7

For b = 2a = 1667, this coincides with the
formulation of Gille and Goody [3], while in
the present study values for a and b will be
chosen as

=3 )

In addition to equations (6) and (7), which are
general expressions for all optical thicknesses,
there also exist the well-known optically thin
and optically thick limits. As discussed by
Cogley, Vincenti and Gilles [13], and by Wang
[4], the linear Planck mean coefficient applies
when the radiation is both linearized and
optically thin. This mean coefficient is defined as

a=3

O

| kfde,/dT)y, do
: : ©)

Kip =
40T}

The optically thin expression for the one-
dimensional divergence of the radiative flux
vector may be obtained by differentiating equa-
tion (6), noting from equations (5) and (9) that in
the optically thin limit & = x,, [since E,(x,y)
~ 1 for x,y < 1], and deleting the self absorp-
tion terms. The result is
-—dﬂ—ST3 T+ T 166 T3k, T
dy = 80Tix, )T} + Tp) — 166 Tk pT(y).

(10)

When the radiation is optically thick, the

radiative flux is described by the Rosseland

equation, which for linearized radiation has the
form [13]

166T3;dT

gr = — s

3kg dy

11 1 (de, d
kg 40T3 )k, \dT/r, @
(1]

(1)

where

(12)
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is the conventional Rosseland mean absorption
coefficient.

DIFFERENTIAL APPROXIMATION

The differential approximation has seen wide
application in gray gas analyses. A nongray
extension of the differential approximation has
been proposed by Traugott [14] for the emis-
sion-controlled limit (cold boundaries), and the
basis of this extension was the requirement that
the differential approximation reduce to the
correct thin and thick limits. Cogley, Vincenti
and Gilles [13] have discussed this for linearized
radiation. More recently Gilles, Cogley and
Vincenti [6] have shown that a differential
approximation for linearized radiation can be
obtained through approximating &(y) by an
exponential function in equation (6).

A similar result may be obtained from equa-
tion (7) by letting*

EO) 2K e, 1 —gy) > Lemn (13)
Ky
where k, and k, are as yet unspecified mean
absorption coefficients. Upon substituting equa-
tion (13) into equation (7), differentiating twice,
and making use of equation (8), the differential
approximation for gg is

d%q dT
FZR — 9x2qp = 12x,06T3 O

The boundary conditions for equation (14)
follow by substituting equations (8) and (13) into
equation (7), and combining the resulting ex-
pression for g with its first derivative at each
boundary [6]. This yields

(14)

<d€qy£> = $%,44(0) = 12%,0T3[TO) — T3]
(15a)

(&)
dy y=L

* A parallel treatment, applicable to the emission-
controlled limit, has recently been given by Traugott [16]

+ 3,qR(L) = 12x,06 T T(L) — T5]

(15b)

Three pairs of choices for k, and k, have been
suggested by Gilles, Cogley and Vincenti [6],
and these are*

Ky =Ky =Kpp (16)
Ky = K, = Kg (1
Ky = Kpp, Ky = (KLPKR)&- (18)

The use of equations (16) or (17) corresponds to
the gray gas assumption applied to equation
(7), with either k; p or kg being employed as the
mean absorption coefficient. As discussed in
reference [ 6], the use of equation (18) in equation
(14) yields the Rosseland equation in the optic-
ally thick limit, while the correct form for
dqg/dy is obtained in the optically thin limit.}
However, equation (18) does not produce the
correct expression for gz in the optically thin
limit. This may easily be shown by substituting
equations (8) and (13) into equation (7), and in
the optically thin limit this reduces to
Ky

dr = 4o (—) T‘;(T - Tz).

K;

(19)

which is correct only for x; = k,. To give a
specific example, for a hydrogen plasma with
T' = 10-000°K and P = 37-5 atm, then, accord-
ing to equation (18), x,/k, = 44 [12].

RADIATIVE TRANSFER ANALYSES

The radiative flux expressions discussed in the
two preceding sections will now be applied to
the illustrative problem of a hydrogen plasma
bounded by two parallel black plates. Within

* Actually the proposed x, and «, results of reference [6]
correspond, in the present nomenclature, to different values
of a and b for each pair of x; and x,. Specifically, a = 1 and
b = 2 for equation (16), a = 3 and b = 3 for equation (17),
and a =1 and b = /3 for equation (18). In the present
investigation, @ = 3 and b = 3 will be used throughout.

+ Due to the present choice for a and b, equation (18) will
actually yield a result for the optically thin limit which is
2 times the exact expression given by equation (10) This
hmiting form is obtained by noting that the second term on
the left side of equation (14) may be deleted under optically
thin conditions, such that equation (14) can be integrated
directly The constant of integration 1s evaluated from the
sum of equations (15a) and (15b), with gg(0) = gg(L) for
optically thin radiation
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the plasma there is a uniform heat source per
unit volume, Q, and the two plates have the same
uniform temperature T, (ie. T, = T)).

With respect to the integral formulation for
the radiative flux, equation (7) will be employed
rather than equation (6). It should be recalled
that equation (7) is an approximate form of
equation (6), and that this approximation refers
to the use of equation (3). The application of
both equations (6) and (7) to ir. radiative
transfer has recently been considered by Greif
and Habib [11], from which it is found that the
essential characteristics of the integral formula-
tion are retained by equation (7). As previously
discussed, results for &(y), €(y), . p and kg are
given in reference [12] for a hydrogen plasma,
and the following analyses will employ these
quantities.

In order to clearly illustrate the radiative
transfer process within the plasma, solutions will
first be obtained neglecting thermal conduction
as an energy transport mechanism. Conduction
will then be included, so that the relative im-
portance of conduction and radiation as trans-
port mechanisms may be determined.

Conduction neglected

For uniform heat generation, and with con-
duction neglected, the statement of conservation
of energy is that dgg/dy = Q. Since the problem
is symmetric, integration of this yields

of-b)-e

_40TAT-T)
= oL
then equations (7), (8) and (20) combine to yield

(20)
Upon letting

0

— 3= 30 ¢T3t — )] o
o

&=

- $J ool - wldw, @

where ¢'(u) denotes the derivative of ¢ with
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respect to u, and u = Pgy, where Py is the
partial pressure of atomic hydrogen. Equation
(21) constitutes an integral equation describing
the dimensionless temperature profile, 6(u),
and the kernel of this equation, &'(u), is tabulated
in reference [12] for hydrogen.

The optically thin solution may be obtained
directly from equation (21). Analogous to the dis-
cussion preceding equation (10), optically thin
radiation corresponds to

and the optically thin solution of equation (21)
is found to be

1

As previously discussed, this result is in error by
a factor of § dueto the present choice for a and b.
Equation (22) is, however, consistent with
equation (21) as well as with equations (14) and
(15).

The optically thick solution follows from
equations (11) and (20) as

u u?
6(4) = gxxL (u_o - ;g>’

while combining equations (14), (15) and (20)
yields

K u u?
O(u) = g(x—:) L (u—o - ;Tg)

1 3
+ m(l + szL) (24)

(23)

for the solution corresponding to the differential
approximation.

Equation (21) has been solved numerically for
6(u) employing the same method used in [8],
and for the sake of brevity only the centerline
temperature will be presented; that is, T, =
T(L/2). This is represented by the solid curve in
Fig. 1 for T, = 10000°K and an electron
density of 10'7 ¢cm™3, which corresponds to a
total pressure of 37-5 atm. Also shown are results
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utilizing continuum radiation only, and this
solution was obtained from equation (21) by
employing values of ¢'(u) from reference [12] for
which lines were not included in the calculation.
It may be seen that the importance of line
radiation is relatively small for the conditions
of Fig. 1, and the reason for this is that the lines

100 T

Continuum only

1of- L____

Continuum and lines

€ .
° /
- - Optically thick—" " -
SN /
1 .
NN
S /
ol /.
Optically thin
001 ! i
o1 | ) 100
L, c¢m

Fic. 1. Centerline temperature results with conduction
neglected, T, = 10000°K. N, = 107 cm ™3 (P = 37'5 atm).

are nearly opaque and thus do not contribute
significantly to the radiative transfer process. In
addition, for the conditions of Fig. 1 the Lyman
continuum is also nearly opaque. Consgquently
the radiative transport process illustrated in
Fig. 1 is due primarily to continuum radiation,
with the Lyman continuum excluded. One may
note the relative invariance of the ‘solid curve
with L for the smaller L values, and this is
indicative of optically thin radiation.* The
implication is clearly that, while the lines and
the Lyman continuum are nearly opaque, the

* See equation (22) and note that the ordinate of Fig. 1
corresponds to L&(ug/2).

remaining continuum radiation is nearly optic-
ally thin for small L values.

The optically thin and optically thick solu-
tions, corresponding to equations (22) and (23),
respectively, are also illustrated in Fig. 1. Since
the lines are nearly opaque even for L = 01 cm,
it is obvious that excessively small values of L
would be required for the solution of equations
(21) to approach the optically thin limit (i.e. for
both line and continuum radiation to be optic-
ally thin). Conversely, extremely large L values
are necessary for continuum radiation to become
optically thick, which must occur in order for
the solution of equation (21) to approach the
optically thick limit.

Similar comparisons are shown in Fig. 2 for

1000
. PA
Continuum only
E 00 .
. Continuum ond lines
SIS
1] b - _ _
wlx —
< ok Optically thin |
| 1 I
0l i 10 100
L, cm

FiGg. 2. Centerline temperature results with conduction
neglected, 7, = 20000°K, N, = 10'7 cm ™3 (P = 057 atm).

T, = 20000°K and the same electron density
(10'7 cm™3), which in this case corresponds to
a total pressure of 0-57 atm. Here the line
contribution is much more pronounced, which
results from a combination of the lower pressure
and higher temperature. This gives rise to lower
spectral optical thicknesses for the lines, relative
to the conditions of Fig. 1, such that, except for
very large values of L, the lines are not opaque
and thus contribute to the radiative transfer
process. Note that the optically thin solution is
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a more realistic limit than for the previous
comparison, although extremely small L values
would still be required in order to approach
optically thin radiation. On the other hand, the
optically thick solution is even less useful than
for the conditions of Fig. 1, and it is not possible
to include it in Fig. 2. To give an example, for
L = 100 cm the optically thick limit yields an
ordinate value of 0-081, which is roughly four
orders of magnitude less than what would be
predicted by the solution of equation (21).

An additional comparison is shown in Fig 3
for T; = 10000°K and an electron density of
10 ¢cm~3, which corresponds to a pressure of
0-43 atm. As would be expected, the importance
of line radiation is more pronounced than in
Fig. 1, since the pressure is substantially less
than for Fig. 1. On the other hand, a comparison
of Figs. 2 and 3 illustrates the effect of tempera-
ture upon the line contributions, since the two
pressures are relatively close to one another.
While the line contribution steadily diminishes
with increasing L in Fig 2, this is not the case
for the lower temperature results of Fig. 3.

10% T T

Optically thin

; i ]
oy } 10 100
L, cm
Fig. 3. Centerline temperature results with conduction
neglected, T; = 10000°K, N, = 10*® cm ™3 (P = 043 atm),

Evidently, for the conditions of Fig. 3, the line
contribution for small L values is due mainly to
a few strong lines. As L increases, these lines
become opaque, while weaker lines become
increasingly important. Eventually, for very
large values of L, the line contribution will
become negligible.

As in the previous figure, the radiative transfer
process for the conditions of Fig 3 is far from
approaching optically thick radiation, with the
optically thick limit underestimating the ordi-
nate value by roughly five orders of magnitude
for L = 100 cm.

The somewhat different shape of the solid
curve in Fig. 3, as opposed to Figs. 1 and 2, can
best be explained by considering the dashed
curve representing continuum radiation only.
For small values of L, this curve approaches a
constant value indicative of optically thin
radiation, and for the conditions of Fig. 3 this
corresponds to the entire continuum being
optically thin. The dashed curve also indicates
optically thin radiation for large L values, and
this is a consequence of the Lyman continuum
becoming opaque while the remaining con-
tinuum is still optically thin. This transition of
the Lyman continuum from optically thin to
opaque in turn dictates the shape of the solid
curve representing both line and continuum
radiation.

Results employing the differential approxi-
mation, equation (24), are compared in Figs. 4
and 5 with the solution of equation (21). Un-
fortunately, the differential approximation, as
presently employed, does not appear to be a
particularly useful approximation. The possible
failure of the differential approximation has
been predicted by Gilles, Cogley and Vincenti
[6], and they suggest that it may be necessary to
replace equation (13) by a sum of exponentials
in order “to represent a gas that is simul-
taneously thick and thin in different parts of the
spectrum”. Indeed, in the present situation line
radiation generally corresponds to large optical
thicknesses, while continuum radiation tends
toward much smaller optical thicknesses, Similar
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100 T
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Solution of equation (21)
— — — Differential approximation
0-01 | |
o] ] to 100

L, cm
FiG. 4. Centerline temperature results with conduction
neglected, T; = 10000°K, N,. = 10! cm~3 (P = 375 atm).

conclusions have been reached by Traugott [16]
for the emission-controlled limit.

Conduction included
When conduction is included as a transport
10% T
K 5Ky ZKg
E 10°F —— solution of eq. (21} N
— — — Differential approximation
W
s
[N
3
10% - _
I
K|=KLP,K2=(KLPKR)/2 e
R A =~
10 * L
o1 I 10 700

L, cm

FiG. 5. Centerline temperature results with oconduction
neglected, T; = 20 000°K, N, = 107 cm~3 (P = 0-57 atm).

mechanism within the gas, the statement of
conservation of energy becomes

dT L
AE+Q Yy =5 =4r

In this case a dimensionless temperature differ-
ence will be defined as

T-T,

?= o

(25)

and equations (7), (8) and (25) combine to yield
d¢ u 1
g+ (i -3)

-]

uo

- jfb(u’) ¢[30 — w] du'}‘ (26)

u

&) e[3u — u)] du

[ LS

Since the presence of conduction implies con-
tinuity of temperature at the boundaries, the
boundary condition for this equation is

$(0) = 0. 27

Equation (26), subject to equation (27), has been
solved numerically employing thermal con-
ductivity values of Yos [15]. Note that for
negligible radiation transfer
1{u u?
=={— =] 28
¢ > (uo ué) (28)
Dimensionless centerline temperatures, as
obtained from the solution of equation (26), are
illustrated in Figs. 6 and 7. Since the centerline
temperature for pure conduction follows from
equation (28) to be
LT _ g9
QL /A
then Figs. 6 and 7 serve to illustrate the effect of
radiative transfer upon the temperature profile
within the gas. As would be expected, the im-
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portance of radiation becomes more pro-
nounced as the plate spacing is increased.

The effect of pressure, as illustrated in Fig. 6,
is in accord with Figs. 1 and 3, since for the
conditions considered an increase in pressure
results in an increase in radiative transport

0125 T T T L
012 —
P=0-43 atm.
(W, =10"%cm3)
o-10 -
008 -
<
SIS
(N 08—
S 00 Continuum
and lines
_ _ _ Continuum
004 only
0-02[— P=37-5 atm. . 1
(N, =107 em™3)
0 i 1 i i1

L, c¢m
FiG. 6. Centerline temperature results with conduction
included, T; = 10 000°K.

0-12% T T T 7 T T T T
o012k ]
AN Continuum
\ and lines
\ — — — Continuum
o 10} \ only .
0-08}
- <
T
Wlg oo
004
002
o]

L, cm
FiG. 7. Centerline temperature results with conduction in-
cluded, T; = 20000°K, N, = 107 cm™3 (P = 057 atm).

9

within the plasma. The influence of line radia-
tion, which is illustrated in Fig. 6 for 375 atm
as well as in Fig. 7, also agrees with the previous
results of Figs. 1 and 2.

What is perhaps most surprising about the
information presented in Figs. 6 and 7 is the
large role radiation plays as an internal transport
mechanism. To give an example, for a tempera-
ture of 20 000°K and a pressure of 0-57 atm, the
centerline temperature difference is reduced by
approximately one half, relative to pure con-
duction, for L = 0-4 cm, which implies that for
these conditions radiation and conduction are
equally important energy transport mecha-
nisms. For the same temperature and pressure,
but with L = 1 cm, the centerline temperature
difference is reduced by an order of magnitude,
and thus radiation completely dominates over
conduction.

DISCUSSION OF RESULTS

Although the results of the previous section
are quite limited in extent, it is, nevertheless,
clear that the practical utility of either the
optically thin or optically thick limits is very
restricted, and this is due to the large range of
optical thicknesses that occur under actual
conditions. It should be emphasized, however,
that the preceding results characterize a situa-
tion for which the net radiative transfer is solely
between the gas and the bounding surfaces ; that
is, there is no net radiative transfer between
surfaces. In this regard, it is of interest to con-
sider briefly the opposite extreme of a problem
for which the net radiative transfer is strictly
between the surfaces. Such a situation is that of
radiative equilibrium for a hydrogen plasma
bounded by two parallel surfaces having different
temperatures 7; and T,

The state of radiative equilibrium is described
by dqg/dy = 0; that is, there is no net energy
transfer to or from the gas, such that gz =
constant. Upon defining

0= qr = T-T,
T ATHT TV = —
4TXT, - Ty [
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then equations (7) and (8) yield
0=1- 8[%(“0 —u)]

- %zn(u’)gé’[%u - u’):! du’

+ 3 | n) &[5 — u)] du'. (29)
This together with the radiative equilibrium
condition

(30)

completely describes both #(u) and Q. This
system of equations has been solved numerically,
and the results for the dimensionless heat flux
between surfaces, 0, are illustrated in Fig. 8. In
this case the optically thin limit coincides with
the result for a transparent gas, for which § = 1.

0 = const.

[
T T
7, =20 000°K
P=0-57 atm.
to —
'TN 09 |
SIS
S os 7, =10 000°K . |
<+ P=37-5 atm.
IS
o7 B
Continuum and lines
061~ — — —- Continuum only
| 1
0557 I 10 100

L, cm

Fic 8 Heat flux results for radiative equilibrium, N, =
107 cm ™3

Consider as an example T; = 10000°K, P =
37'5 atm, and L = 1 cm. From Fig 8, Q = 0:96,
and this is sufficiently close to unity so that the
radiative equilibrium problem might be re-
garded ‘as optically thin. On the other hand,
with reference to Fig. 1 the radiative transfer
process within the plasma is far from being

optically thin for the uniform heat generation
problem.

This difference in interpretation is due mainly
to the role played by line radiation. With
reference to Fig. 1, it has previously been
discussed that the lines are essentially opaque,
while for L values less than approximately 1 cm,
continuum radiation (with the exception of the
Lyman continuum) is close to being optically
thin. Thus, the departure from optically thin
radiation in Fig. 1 is primarily a consequence of
the lines being nonthin. Conversely, the fact
that for radiative equilibrium the opaque lines
do not substantially reduce Q is a result of line
radiation encompassing only a small fraction
of the radiation spectrum. The optically thin
continuum radiation, however, encompasses
most of the spectrum, and, for the conditions
previously stated, since this radiation is nearly
optically thin, the resulting value for Q will in
turn be close to the optically thin limit.

In effect, line radiation appears to have little
influence upon radiative transfer through the
plasma, as is further shown in Fig. 8 for T, =
20000 K and P = 0-57 atm, while it may or
may not play a significant role as an energy
transport mechanism within the plasma, de-
pending upon whether the line radiation is or is
not opaque. Agamn referring to the above con-
ditions of T, = 20000"K and P = 0-57 aim.
Figs. 2 and 7 illustrate that hne radiation can
indeed be an important energy transport mech-
anism within the plasma.
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TRANSPORT D’ENERGIE PAR RAYONNEMENT A L’INTERIEUR D'UN PLASMA
D’HYDROGENE

Résumé—1L'objet de cette étude est d’examiner diverses méthodes d’analyse du transport d’énergie par
rayonnement dans un plasma. Dans ce but, un systéme physique trés simple est choisi, consistant en un
plasma d’hydrogéne limité par deux plaues noires paralléles, et 4 Iintérieur une source uniforme de
chaleur par unit¢ de volume. Des résultats restreints sont présentés aussi pour un plasma d’hydrogéne

en équilibre de rayonnement.

Puisque le rayonnement par raies est caractérisé généralement par des épaisseurs optiques relativement
grandes, tandis que le rayonnement continu correspond & des épaisseurs optiques beaucoup plus petites,
on trouve que les limites optiquement mince et optiguement &paisse ont peu d’utilité pratique, en ce que
les rayonnements par raies et continu seront rarement soit fins soit épais simultanément. Cette grande
variation dans I’épaisseur optique spectacle apparalt en outre limiter I'utilité d’une approximation dif~
férentielle non grise, grice & laquelle le flux rayonnant est décrit & I'aide d'une équation différentielle du

second ordre.

On montre que le rayonnement par raies peut avoir un effet sensible sur le transport par énergie de
rayonnement dans le plasma pour des pressions modérées. A des pressions plus élevées, cependant, les
raies deviennent opaques et ne contribuent plus au processus de transport par rayonnement. Dans 'un
ou Pautre cas, les raies semblent avoir pen d’influence sur le rayonnement passant 4 travers le plasma {en
opposition avec le transport par rayonnement 4 I'intérieur du plasma), puisque les raies ne concernent

seulement qu’une petite fraction du spectre.

ENERGIETRANSPORT DURCH STRAHLUNG IN EINEM WASSERSTOFF-PLASMA

Zusammenfassung—Zweck dieser Untersuchung 1st es, verschiedene Berechnungsmethoden fiir die
Wirmestrahlung in einem Plasma zu studieren. Dazu wird ein sehr einfaches physikalisches System

gewihlt:

Ein Wasserstoffplasma, das durch zwei parallele schwarze Platten begrenzt ist, und in dem pro Volu-
meneinheit eine konstante Warmemenge produziert wird. Begrenzt giiltige Frgebnisse werden auch fiir
ein sich im Strahlungsgleichgewicht befindliches Wasserstoffplasma angegeben.

Da “Linien”-Strahlung im Allgemeinen durch relativ grosse optische Dicken charakterisiert ist,
wihrend bei kontinuierlicher Strahlung meist weit kleinere Dicken vorliegen, ergibt sich, dass die Losung
fir die optich diinnen und optisch dicken Grenzfille wenig praktischen Wert besitzen, weil “Linien”-
Strahlung und kontinuierliche Strahlung zusammen selten gleichzeitig optisch diinn oder sein werden.
Die grossen Unterschiede in den spektralen optischen Dicken scheinen ferner die Anwendbarkeit einer
Néherung fiir nicht-graue Strahlung, bei der der Strahlungsstrom i durch eine Differentialgleichung 2,

Ordnung beschrieben wird, zu begrenzen.

Es wird gezeigt, dass die “Linien”-Strahlung bei missigen Driicken einen betrichtlichen Einfluss auf
den Energletransport innerhalb des Plasmas haben kann, Bei hoheren Driicken werden die “Linien”
allf:rdmgs undurchlissig und die von ihnen ausgehende Strahlung trigt nichts mehr zum Energietransport
bei. In jedem Fall scheinen die Linien wenig Einfluss auf Strahlung za haben die durch das Plasma hin-
durchgeht (im Gegensatz zum Strahlungstransport innerhalb des Plasmas), da Sie nur einen kleinen

Bruckteil des Spektrums umfassen.



12

D. A, MANDELL and R D CESS

JYYUCTBIN DHEPTOOBMEH B BOJJOPOJHON IJIASME

Andoranmns—Ilensio qaunol paGoTel 6RO HBYUYEHME PASIUYHEX METOROB AHAIH3A [EPEHOCA
Ty4uCTO SHEPTHM B nuasMe. JnA erolt yemn Guina BeIOpaHa npocras PUanuYecHas CUCTEMA,
COCTOAINAA K3 BrATPrEHOA NJasMBl, ODAaHMUYEHHON JByMH NapaiNeNbHEIMY YePHBIMHU
IJIaCTHHAMY, & BHYTDH ITa3Mbl MMEJICA OXHOPOAHLI McToUHEK Tena. [Ipexcranieunt Tarxe
HEKOTOphie Pe3yJILTATH LIA BOXOPOJHON MAABMEL IPH JIyYMCTOM DABHOBECUH.

IMockonbKy dMHeWHOe H3jIyueHHe OOHYHO XAPAKTEDU3YETCA OTHOCHTETbHO BG0oIbIMME
IUIOTHOCTAMM, TOTAA KAK HEMpPepHIBHOMY MBJYYEHMI0 COOTBETCTBYIT MHOTO MEHbIINe
ONTHYECKUe INOTHOCTH, HAlIeHO, YTO MaJible M GOJIbHIME MpeReNBl ONTHYeCHON MIOTHOCTH
APAKTHYECKN MAJO TMOJE3HBI, TAK KAK JUHeIHOe H3IyyeHe i HeIPePHBHOE U3NYYeHHEEe PEAKO
BCTPEUAIOTCH OJHOBPEMEHHO MAJHMu uam Oompumumu. OHaspiBaeTcA, 4T0 Takoe GOJIBINOE
U3MEeHeHHe CHEKTPAJLHON ONTHUecKol IUICTHOCTM OTPAHNYEBAET MCHONBL3OBaHUE Hecepolh
saddepenmabHOR ANTPOKCHMANME, € MCHONb30BAHHEM HOKOpOM IYYHMCTHE WOTOK
onuchiBaeTcA AUPpepeHNUATLHEM yPaBHEHUEM BTOPOro HOPARKA.

Iloxasano, 9T0 JMHe{HOe MBJAYYEHHE MOMKET HMETH 3HAYUTeNhHOe BIMAHME HA IEPEHOC
JAYYUCTOH HHEPIUM BHYTPH IIIA3MBI 71 yMEepPeHHHX AaBieHuit. Oguaxo, npu 6ojee BHICOKMX
HABIEHKAX JMHHN CTAHOBATCA HENPO3PAYHHIMM M He OKAa3BBAIOT BIMAHMA HA NpOHeEce
JYYHCTOro nepenoca. B moGom ciyyae OKasbIBALTCA, YTO JMHMM MAJI0 BAMAIOT HA NPOXORALIee
Yepes MAASMY MBIAYyYeHHEe (B OPOTHBONOJOMKHOCTb JYYMCTOMY HEPeHOCY BHYTDH IUIasMBH),

TOCKOJBKY JIMHMU OXBATHBAIOT TOJLKCG HEGOJBIIYIO AOJIO CIEKTPA.



